Daily Archives: April 5, 2012

Locking in Microsoft SQL Server (Part 13 – Schema locks)

We did not talk much about schema locks while back when we were discussing locking. Those locks are a little bit different than other locks – they are acquired on objects (and metadata) level and protecting the metadata. Think about it from the following prospective – you don’t want to have 2 sessions altering the table simultaneously. And you don’t want the table being dropped when you are selecting data from there.

There are 2 types of schema locks. SCH-S – schema stability locks. Those locks are kind of “shared” locks and acquired by DML statements and held for duration of the statement. They are compatible with each other and with other lock types (S, U, X, I*). The caveat is that those locks acquired regardless of transaction isolation level – so you’d have those locks even when your queries are running in read uncommitted or snapshot isolation levels. Let’s take a look.

First, let’s create the table and populate it with some data. You, perhaps, need to adjust number of rows in the table based on your hardware.

Second, let’s run long-running select in read uncommitted mode (I even use NOLOCK hint to make it a little bit more “visible”).

And while it’s running, let’s run the statement that shows currently acquired locks (click on the image to open it in the new window). That statement is basically using sys.dm_tran_locks DMV – I just added a few other things to make it easier to see/understand. You can get it in the script file (see the link below).

And here are the results:

As you can see, even if statement uses READ UNCOMMITTED transaction isolation level, we still have SCH-S acquired.

Second type of the lock is schema modification lock – SCH-M. This lock type is acquired by sessions that are altering the metadata and live for duration of transaction. This lock can be described as super-exclusive lock and it’s incompatible with any other lock types including intent locks. Let’s take a look. Let’s run the previous select again and in another session let’s try to alter the table – add new column.

Even if adding nullable column is pure metadata operation, as we can see below it’s blocked.

I’m pretty sure you saw that behavior when you tried to update metadata in production on the live system 🙂 And interesting thing, that while you have SCH-M lock waiting, you can easily get other SCH-S locks acquired on the same object without any problems. Let’s take a look – again, let’s run first select, next alter table statement, and finally run the third select (I renamed CTE to CTE2 here):

As you see, there are 2 granted SCH-S locks and one SCH-M lock request waiting for both sessions. This is a reason why your DDL statement can wait for quite a long time on the system under heavy load.

The biggest possible issue with schema modification lock is that it’s incompatible even with intent locks. Let’s take a look – same scenario as before, but let’s run INSERT statement in the third session.

And let’s check the locks.

Insert statement is trying to place intent lock (IX) on the table and it’s incompatible with SCH-M lock. So insert is blocked. Kind of interesting situation when select in read uncommitted isolation level blocks insert. And if we think about it, there are more operations counted as metadata modifications than we think. For example, index rebuild would do exactly the same thing. And of course partitioning related operation.

If we think about SCH-M locks, they are acquired on the object level – deadlock possibilities are endless. And unfortunately, that’s extremely annoying when you’re dealing with operations related to table partitioning. Well, there is no easy way to solve that problem – good error handling could help though. I will show some examples shortly.

Source code is available for download

Next: Deadlocks during DDL operations (alteration, partition switch, etc)

Table of content