# SQL Server: Practical Troubleshooting

# Who is this guy with heavy accent?

- 11+ years of experience working with Microsoft SQL Server
- Microsoft SQL Server MVP
- Microsoft Certified Master (SQL Server 2008)
- MCPD
  - Enterprise Application Developer
- Blog: <u>http://aboutsqlserver.com</u>
  - Session will be available for download
- Email: <u>dmitri@aboutsqlserver.com</u>





### What is it all about?

#### • We will talk about:

- SQL Server execution model
- Wait Statistics 101- How different problems present themselves

#### Session goals:

- Share the experience
- Demonstrate the set of techniques that helps to analyze OLTP systems

#### • What is out of scope:

- We don't want to miss lunch, do we?
- How to configure and maintain SQL Server instances
- Troubleshooting of Data Warehouse / Reporting blueprint systems

### Full Picture



# Full Picture (1)

#### Hardware and Network

- Does server have enough power to handle the system?
- o I/O subsystem
  - RAID levels
  - I/O throughput (use SQLIO/SQLIOSim for the testing)
  - Disk alignment and sector size (generally 64K sector is the best)
- Network throughput what is the slowest component in the topology?
- OS
  - Are drivers up to date and optimally configured?
  - In case of 32 bit OS do you have memory settings configured correctly (AWE, /3GB /UserVA)?
  - Do you have Min/Max server memory and "Lock Pages in Memory" set?
  - What software is running on the server?
  - Is it virtual server? Are there balloon driver? Is host overcommitted? What is the current host load?

# Full Picture (2)

#### • SQL Server configuration

- Do you have multiple instances running on the same server?
- Do you have multiple databases running on the same server?
  - Is it mixed workload (OLTP/DW)?
  - Different audit/security requirements?
- o TempDB
  - Is it on the fastest disk array?
  - How many files does it have?
  - Is space pre-allocated?
- What is SQL Server memory configuration?
- Is Instant File Initialization enabled?

#### Database

- Do you have Auto-shrink and Auto-close disabled?
- Do you pre-allocate enough space for log file? How many VLF log file has?
- What log file auto-growth parameters do you have?
- How many filegroups / files database has?
- Database files placement and RAID levels

### **Create Baseline**

- Operation standpoint
  - Most part of performance metrics are meaningless by themselves
    - "I have 25 full scans per second. Is everything OK with my system"?
    - "My disk latency is 20ms. Should I be worried?"
  - Baseline helps to be proactive
- Helps to demonstrate achievements to the management and/or customer <sup>©</sup>
  - "We decreased CPU utilization" vs. "% of signal waits decreased from 50% to 15%".

#### SQL Server Execution Model

 $\bullet$   $\bullet$   $\bullet$ 

# SQLOS

- Layer between SQL Server and Windows
- Responsible for
  - o Scheduling
  - I/O operations
  - Memory and Resource Management

### SQL Server Execution Model

- SQLOS assigns 1 scheduler per logical CPU
- Worker Threads created and evenly divided across schedulers
- Batch assigns to 1 or multiple workers and stays until completed
- Worker states:
  - Running currently executing on CPU
  - Suspended waiting for resource
  - Runnable waiting for it's turn to be executed









# $\underbrace{\operatorname{More}}_{\mathbb{A}} \to \underbrace{\operatorname{More}}_{\mathbb{A}} \xrightarrow{\operatorname{More}}_{\mathbb{A}} \underbrace{\operatorname{More}}_{\mathbb{A}} \xrightarrow{\operatorname{More}}_{\mathbb{A}} \to \underbrace{\operatorname{More}}_{\mathbb{A}} \xrightarrow{\operatorname{More}}_{\mathbb{A}} \xrightarrow{\operatorname{M$



• Dmitri Korotkevitch (http://aboutsqlserver.com)

RUNNABLE QUEUE



### Wait Statistics 101

• Wait Statistics – what server is waiting for

#### 3 SELECT

wait\_type, wait\_time\_ms,

convert(decimal(7,4), 100.0 \* wait\_time\_ms / SUM(wait\_time\_ms) OVER()) AS [Percent]

from

| sys.dm os wait stats                                     |     |                     |              |         |          |
|----------------------------------------------------------|-----|---------------------|--------------|---------|----------|
| where                                                    |     | wait_type           | wait_time_ms | Percent |          |
| <pre>wait_type NOT IN ('CLR_SEMAPHORE','LAZYWRITER</pre> | 1   | BACKUPBUFFER        | 11311975189  | 20.6899 |          |
| , 'SLEEP SYSTEMTASK', 'SQLTRACE BUFFER FLUSH', '         | 2   | BACKUPIO            | 11153312594  | 20.3997 | 0        |
| 'CLR MANUAL EVENT', 'CLR AUTO EVENT', 'DISPATCH          | E 3 | PAGEIOLATCH_EX      | 4620890485   | 8.4517  | 4.)<br>- |
| ,'XE_DISPATCHER_WAIT', 'XE_DISPATCHER_JOIN',             | 4   | WRITELOG            | 3983896698   | 7.2866  | JE       |
| , 'OLEDB', 'MSQL_DQ' )                                   | 5   | PAGEIOLATCH_SH      | 3719440813   | 6.8029  | 10       |
| order by                                                 | 6   | CXPACKET            | 3630197534   | 6.6397  |          |
| [Percent] Desc                                           | 7   | OLEDB               | 3464571854   | 6.3368  | 6        |
|                                                          | 8   | MSQL_XP             | 2591424522   | 4.7398  |          |
|                                                          | 9   | ASYNC_IO_COMPLETION | 2028625085   | 3.7104  |          |
|                                                          | 10  | SOS_SCHEDULER_YIELD | 1870324254   | 3.4209  |          |
|                                                          | 11  | RESOURCE_SEMAPHORE  | 1314585339   | 2.4044  |          |
|                                                          | 12  | MSQL_DQ             | 1072516276   | 1.9617  |          |
|                                                          | 13  | LCK_M_U             | 816581103    | 1.4935  |          |
|                                                          | 14  | ASYNC NETWORK IO    | 598159386    | 1.0940  |          |
|                                                          | 15  | PAGELATCH SH        | 351490272    | 0 6429  |          |

# Never-ending troubleshooting



# Everything is related



### Memory and I/O bottlenecks

In 95% of the cases caused by non-optimized queries



# I/O and Memory issues troubleshooting

| Туре                    | Name                                        | Description                                                                                                                     |  |
|-------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| Wait Types:             | PAGEIOLATCH_*                               | Disk to memory transfer                                                                                                         |  |
|                         | IO_COMPLETION                               | I/O operations. Usually non data pages                                                                                          |  |
|                         | ASYNC_IO_COMPLETION                         | Asynchronous I/O                                                                                                                |  |
|                         | WRITELOG, LOGMRG                            | Log I/O operations                                                                                                              |  |
| Performance<br>Objects: | Buffer cache hit ratio                      | How often page found in the cache. Do not use                                                                                   |  |
|                         | (Avg) Disk Queue Length                     | The length of the disk queue.                                                                                                   |  |
|                         | Page life expectancy                        | How long page stays in the cache. Watch the trends.<br>As the starting point – should be > (DB_CACHE_SIZE / 4GB<br>) * 300 sec. |  |
|                         | Checkpoint pages/sec<br>Lazy writers/sec    | How often pages saved to disk<br>Memory pressure: High values + low page life expectancy                                        |  |
|                         | Page reads/sec                              | Number of physical page reads that are issued per second                                                                        |  |
|                         | Avg Disk Bytes/*<br>Avg Disk sec / Transfer | Disk performance counters                                                                                                       |  |

# I/O and Memory issues troubleshooting

| Туре                    | Name                                         | Description                                                                           |  |
|-------------------------|----------------------------------------------|---------------------------------------------------------------------------------------|--|
| Wait Types:             | RESOURCE_SEMAPHORE                           | Memory grants wait and statistics<br>Waits should be minimal for OLTP                 |  |
| Performance<br>Objects: | Memory Grant Pending                         | Expected for Data Warehouse type systems                                              |  |
|                         | Memory Grant Outstanding                     |                                                                                       |  |
| DMV:                    | Sys.dm exec query stats                      | Query execution statistics                                                            |  |
|                         | Sys.dm_io_virtual_file_stats                 | I/O statistics for database files.<br>Io_stall – total time that users waited for I/O |  |
|                         | sys.dm_os_memory_clerks<br>DNCC MEMORYSTATUS | What is using memory                                                                  |  |

# Sys.dm\_exec\_query\_stats

| SELE         | CT TOP <b>250</b><br>SUBSTRING(at.TEXT, (as | .statement | start off | set/2)+1,                                                                             |              |              |              |
|--------------|---------------------------------------------|------------|-----------|---------------------------------------------------------------------------------------|--------------|--------------|--------------|
|              | ((                                          |            |           | , ,                                                                                   |              |              |              |
|              | CASE qs.statem                              | ent_end_of | fset      | -                                                                                     |              |              |              |
|              | SOI                                         |            |           | query plan                                                                            | Total Reads  | Total Writes | Total CPU    |
| 1            | select Subi, cast(R                         | 1          | 6816382   | < <u>ShowPlanXM</u>                                                                   | 6816296      | 86           | 24297389     |
| 2            | select UID, DOCTY                           | 26455      | 4143503   | <showplanxm< td=""><td>109616393555</td><td>0</td><td>154369131409</td></showplanxm<> | 109616393555 | 0            | 154369131409 |
| 3            | DELETE TOP (@d                              | 1          | 4096631   | <showplanxm< td=""><td>4096468</td><td>163</td><td>26538518</td></showplanxm<>        | 4096468      | 163          | 26538518     |
| 4            | insert into #tmpRep                         | 62         | 3690210   | NULL                                                                                  | 228750206    | 42859        | 3351099613   |
| 5            | update #tmpReportI                          | 62         | 3139967   | NULL                                                                                  | 194677952    | 7            | 2406888686   |
| 6            | insert into #tmpRep                         | 58         | 2516483   | NULL                                                                                  | 145905711    | 50341        | 1761652781   |
| 7            | select D.*, O.CATE                          | 16         | 1848720   | <u><showplanxm< u=""></showplanxm<></u>                                               | 29579527     | 0            | 64629691     |
| 8            | update #tmpReport                           | 13         | 1520333   | <u><showplanxm< u=""></showplanxm<></u>                                               | 19764334     | 5            | 194722131    |
| 9            | select D.*, I.Catego                        | 36         | 1511917   | <u><showplanxm< u=""></showplanxm<></u>                                               | 54429042     | 0            | 114735561    |
| 10           | update #tmpReport                           | 26         | 1459946   | <u><showplanxm< u=""></showplanxm<></u>                                               | 37958482     | 138          | 447010567    |
| 11           | update #tmpReport                           | 12         | 1426777   | <u><showplanxm< u=""></showplanxm<></u>                                               | 17121325     | 4            | 164099386    |
| 12           | insert into #tmpRep                         | 53         | 1079374   | NULL                                                                                  | 57198359     | 8467         | 865721533    |
| ORDE<br>opti | R BY<br>[Avg IO] desc<br>on (recompile)     |            |           |                                                                                       |              |              |              |

### **Troubleshooting IO Issues**

• • •

Demo

### Parallelism issues



- Parallelism is not required for *tuned* OLTP Systems
- Parallelism always exists in Data Warehouse Systems
- MaxDOP must be <= # of CPUs per hardware NUMA node</li>
- Consider to increase "Cost Threshold for Parallelism" rather than change MAXDOP in OLTP

#### **Troubleshooting Parallelism**

Demo

# **CPU Bottleneck**

| Туре        | Name                    | Description                                                 |
|-------------|-------------------------|-------------------------------------------------------------|
| Wait Types: | SOS_SCHEDULER_YIELD     | Task is waiting for its quantum to be renewed               |
|             | CMEMTHREAD              | Memory allocation from the same object. Possibly Ad-hoc sql |
| DMV:        | Sys.dm_os_wait_stats    | Signal_wait_time_ms > 25% of total waits                    |
|             | sys.dm_os_memory_clerks | CACHESTORE_SQLCP: Memory for Ad-Hoc query plans             |
| Performance | Batch Requests/sec      | Total Batch Requests per second                             |
| Objects.    | SQL Compilations/sec    | Initial compilations + recompilations                       |
|             | SQL Re-Compilations/sec | Recompilations                                              |

#### • Could mask:

- Excessive Ad-Hoc SQL / Dynamic SQL / recompilations
- Bad SQL Code
- Non-optimized queries

#### • OLTP Systems:

- Initial Compilations = Sql Compilations/sec SQL Re-Compilations/sec
- Plan Reuse = (Batch requests/sec Initial Compilations) / Batch request/secs > 90%

# Troubleshooting Recompilations

Demo

#### **Scalar Functions**

• • •

Demo

# Async\_Network\_IO

- Server waits for client to consume data
- Could be:
  - Network issues
  - Client code issues
    - READ ALL DATA BEFORE PROCESSING!

# Troubleshooting Recompilations

Demo

### Locking, Blocking and Deadlocks

| Туре                    | Name                                         | Description                                                    |
|-------------------------|----------------------------------------------|----------------------------------------------------------------|
| Wait Types:             | LCK_M_*                                      | Waiting for lock to be obtained                                |
| DMV:                    | Sys.dm_tran_locks                            | Currently active locks                                         |
| Traces &                | Blocked Process Report                       | Tasks have been blocked for more than specified amount of time |
| Extended<br>Events      | Deadlock graph                               | Deadlocks                                                      |
| Performance<br>Objects: | Counters from<br><instance>\Locks</instance> | Locks/Timeouts/Deadlocks statistics                            |

# Why Locking?

- Major Lock Types:
  - Shared (S) acquired by readers
  - Exclusive (X) acquired by writers
  - Update (U) acquired by writers while locating rows for update
- Lock Compatibility Matrix:



- SQL Server always obtains U/X locks regardless of isolation level (even read uncommitted)
- (X) Locks held till end of transactions
- Beware of non-optimized queries



# Lock Escalation

- SQL Server tries to escalate locks to the table/partitions level
  - Initial Threshold: ~5,000 locks on the object
  - If it fails, it tries again every ~1,250 locks
- Pattern: batch operation triggers lock escalation. All other sessions accessing the object are blocked
- Troubleshooting
  - High wait % of intent locks (LCK\_M\_I\*)
  - SQL Profiler Locks: Escalation event
- Solution
  - Trace flag 1211 (instance level) not recommended but sometimes required
  - SQL Server 2008+: alter table .. set lock\_escalation
  - Optimistic transaction isolation levels
    - Row version model writers don't block readers

#### Lock Escalation

••• Demo

# **Real Life Story**

|    | wait_type           | wait_time | Percent |
|----|---------------------|-----------|---------|
| 1  | CXPACKET            | 47237677  | 37.0492 |
| 2  | LCK_M_IS            | 17641793  | 13.8367 |
| 3  | PAGELATCH_UP        | 10757870  | 8.4375  |
| 4  | LCK_M_SCH_S         | 10103857  | 7.9246  |
| 5  | ASYNC_NETWORK_IO    | 9715441   | 7.6200  |
| 6  | SOS_SCHEDULER_YIELD | 8970275   | 7.0355  |
| 7  | LCK_M_SCH_M         | 5748216   | 4.5084  |
| 8  | OLEDB               | 3335574   | 2.6161  |
| 9  | LCK_M_IX            | 3000305   | 2.3532  |
| 10 | LATCH_EX            | 2621557   | 2.0561  |
| 11 | ASYNC_IO_COMPLETION | 1613775   | 1.2657  |
| 12 | BACKUPIO            | 1443624   | 1.1323  |
| 13 | IO_COMPLETION       | 1115441   | 0.8749  |
| 14 | BACKUPBUFFER        | 902306    | 0.7077  |
| 15 | WRITELOG            | 882498    | 0.6922  |

• Symptoms:

- High % of Schema Lock Waits
- High % of Parallelism Waits
- Almost none Data I/O waits

• Step 1:

 Focusing on the Schema Lock Waits

#### • Detected problem:

Constant rebuild of FTS index

# **Real Life Story**

|    | wait_type           | wait_time | Percent |
|----|---------------------|-----------|---------|
| 1  | CXPACKET            | 6059039   | 44.1425 |
| 2  | ASYNC_IO_COMPLETION | 1747127   | 12.7285 |
| 3  | BACKUPIO            | 1483546   | 10.8082 |
| 4  | BACKUPBUFFER        | 866660    | 6.3140  |
| 5  | ASYNC_NETWORK_IO    | 573897    | 4.1811  |
| 6  | SOS_SCHEDULER_YIELD | 471540    | 3.4354  |
| 7  | BACKUPTHREAD        | 436083    | 3.1770  |
| 8  | LATCH_EX            | 417119    | 3.0389  |
| 9  | IO_COMPLETION       | 331552    | 2.4155  |
| 10 | LCK_M_S             | 299947    | 2.1852  |
| 11 | WRITELOG            | 258726    | 1.8849  |
| 12 | LCK_M_U             | 151601    | 1.1045  |
| 13 | PAGEIOLATCH_EX      | 150622    | 1.0973  |

#### Symptoms:

- High % of Parallelism Waits
- High % of Signal Waits
- Almost none Data I/O waits
- ∘ ~20% CPU Utilization
- No Memory Pressure

#### Detected problem:

- Poorly optimized queries
- Excessive use of multistatement functions
- Database is almost fully cached
  - No Physical data IO occurs

# So.. If main bottleneck is

- 1/0
  - o Focus on I/O
- I/O and Memory
  - Focus on I/O
- Memory without I/O
  - Check Logical-only I/O
  - Check memory clerks
  - Google It ☺

#### • Parallelism in OLTP system

- Most likely non-optimized queries
- Increase "Cost Threshold for Parallelism" if needed rather than change MaxDOP
- Locking and blocking
  - Detect problematic queries
  - Beware of Lock Escalation
  - As the temporary solution switch to READ COMMITTED SNAPSHOT
    - Be careful!
  - Focus on I/O. If I/O looks OK check client code.



- Thank you for the attending!
- Session will be available for download
  - o http://aboutsqlserver.com/presentations

• Email: dmitri@aboutsqlserver.com