
1Dmitri Korotkevitch (http://aboutsqlserver.com)

Data Sharding in
OLTP Systems

2Dmitri Korotkevitch (http://aboutsqlserver.com)

Who is this guy with
heavy accent?

• Director of Development at Actsoft.
o I’m responsible for DB Design and Development of OLTP system handling

~2500 TPS during peak time

• 9+ years of experience with Microsoft SQL Server

• MCITP
o SQL Server Database Developer 2005, 2008

o SQL Server Database Administrator 2008

• MCPD
o Enterprise Application Developer

• Blog: http://aboutsqlserver.com
o Session will be available for download

• Email: dmitri@aboutsqlserver.com

3Dmitri Korotkevitch (http://aboutsqlserver.com)

Let’s define the problem

• What options do we have when system is about to
outgrow the hardware?
o Upgrade

• It’s a shame that CEO and CFO do not share our passion of buying
new hardware

o Optimize, optimize, optimize!

• Biggest bang for the buck but even optimization has it’s own limit

o Reduce the server workload

4Dmitri Korotkevitch (http://aboutsqlserver.com)

Agenda
• We’re on BI track but this session does not have

anything to do with BI

• Discuss various techniques and architectural

approaches that reduces the server workload
o Canonical technique - Building separate reporting server(s)

o Data Sharding by the book (Share Nothing)

o Sharding of operational and archive data with vertical partitioning

• This is boring PowerPoint based session

5Dmitri Korotkevitch (http://aboutsqlserver.com)

Building Reporting
Server(s)

What’s available out of the box?

6Dmitri Korotkevitch (http://aboutsqlserver.com)

Reporting Servers

Master Instance
(Read / Write)

Reporting Instance
(Read only)

Reporting Instance
(Read only)

• Operational activity done against Master Instance
• Reporting activity done against Reporting instances
• In some cases data in Reporting instances could be

transformed
• Can be implemented as part of High Availability Technologies

o Extra Licensing cost

7Dmitri Korotkevitch (http://aboutsqlserver.com)

Using Replication

Master Instance
(Read / Write)

Reporting Instance

Transactional Replication

• Almost Real Time (latency is in seconds)

• Can be set up on subset of tables/data

• Can be bi-directional

• Introduces additional overhead (maintenance)

8Dmitri Korotkevitch (http://aboutsqlserver.com)

Using Log Shipping

Master Instance
(Read / Write)

Reporting Instance
(Read only)

Log Shipping

• Latency depends on configuration

• Entire database is replicated

• Read only access only

• Simpler setup and maintenance than with

replication

9Dmitri Korotkevitch (http://aboutsqlserver.com)

Using DB Mirroring

Principal Mirror

DB Mirroring

• Read-only access to database snapshot from the

Mirror (Enterprise Edition only)

• Latency depends on Snapshot recreation time

• Development challenges due Snapshot

maintenance
o Failover support

o Client connections during snapshot recreation

Database
Snapshot

10Dmitri Korotkevitch (http://aboutsqlserver.com)

Scalable Shared Database

SAN
(Read only)

Operational
(Read / Write)

11Dmitri Korotkevitch (http://aboutsqlserver.com)

Conclusions
• All methods but replication have latency updating

reporting instances
o If latency is not acceptable application server needs to query/merge

data from the multiple sources

• Some methods introduce interruption of the service

for reporting activity

• With Log Shipping and Mirroring reporting database

is exact replica of production

• With other methods data in reporting instances can

be transformed

12Dmitri Korotkevitch (http://aboutsqlserver.com)

Data Sharding by the Book
Share Nothing Architecture

13Dmitri Korotkevitch (http://aboutsqlserver.com)

Architecture at a glance

USNorth-West

Central South-East

North-East

South-West

Data
Warehouse

14Dmitri Korotkevitch (http://aboutsqlserver.com)

Data Sharding in general..
Pros Cons

• Lower infrastructure

cost
o Scale-out is typically cheaper

than Scale-up

• System is partially

available if some

shards are down

• Almost unlimited

scalability when

properly architected

• Better “cloudability”
o Azure – restricted DB size

o AWS – I/O system limitations

• Higher operational cost
o Need to support multiple

servers

• DR/HA solutions need

to be implemented on

the shard level

• Higher development

cost

15Dmitri Korotkevitch (http://aboutsqlserver.com)

“Share Nothing” in particular..
• Schema is identical for each

Shard

• Good when:
o System has very small dependencies

between the shards

o Business logic can be implemented within

the shard

o Cross-shard unions and joins are minimal

• There is the Data Warehouse for

reporting/analysis purposes

o There are no issues with legacy code

16Dmitri Korotkevitch (http://aboutsqlserver.com)

Example 1 – GPS Tracking

• Everything depend on

Account

• We can shard the

system by sets of

accounts

17Dmitri Korotkevitch (http://aboutsqlserver.com)

Example 2 – Online retailer

• How to support
o Shared list of Articles

o Inventory management

o Fulfillment process

o Customer Billing

18Dmitri Korotkevitch (http://aboutsqlserver.com)

Online Retailer - SOA

Order
Entry

Credit Card
Processor

Inventory
Management

Fulfillment

19Dmitri Korotkevitch (http://aboutsqlserver.com)

Shard Criteria
• Beware of uneven data distribution

o Shard by region – what if East Cost does 90% of the sales?

o Shard by ID range (1..100,000; 100,001..200,000) – what if one of the

customers produces 100th times more data than others?

• One possible way:
o SHARD # = ID mod TOTAL_#_OF_SHARDS

20Dmitri Korotkevitch (http://aboutsqlserver.com)

Conclusion
• Share-Nothing approach is good when

o Shards are independent from each other

o There are very small number of catalog entities

o Business logic can be either implemented within the shard or system

designed as SOA

o Legacy code can be supported

o Operational cost of supporting multiple servers is acceptable

21Dmitri Korotkevitch (http://aboutsqlserver.com)

Vertical Partitioning by
Operational Periods

When “Share Nothing” Approach is not the best choice

22Dmitri Korotkevitch (http://aboutsqlserver.com)

Do we need old data?
• In most OLTP systems users rarely work with old data

o Online Retailer

• How often customers look at the old closed orders?

• How often business needs to access raw data that does not belong to

current or previous tax period?

o GPS Tracking

• Operational activity – data from today

• Analysis of the old data (Breadcrumb trails) limited to the 2 last

payroll/billing periods

23Dmitri Korotkevitch (http://aboutsqlserver.com)

What if..?

2010 data
2009 data

App Server

2011

Legacy
Catalog entities

and recent
transactional data

Transactional
data only

Linked Servers

24Dmitri Korotkevitch (http://aboutsqlserver.com)

What if..?

2009 data

Current Data

Legacy Catalog entities
and most recent

operational period(s)

Transactional
data only

Archived
Data

25Dmitri Korotkevitch (http://aboutsqlserver.com)

Comparing the methods
Vertical Partitioning Share Nothing

• Data dependencies are
much less important

• Scalability limited by the
server hosted current
operational data

• “Cloudability” is limited by
operational server

• Requires operational server
to be available all the time

• Legacy is easier to support

• Lower development cost

• Either
o Shards are self-contained
o System implemented as SOA

• Almost unlimited scalability

• Clouds-friendly

• System is partially available if
some shards are down

• Legacy is the huge issue

• Higher development cost

26Dmitri Korotkevitch (http://aboutsqlserver.com)

What to archive
• Transactional data only

o Keep catalog entities in the main database

• Keep related data together – goal is to minimize

cross-server joins

• Use same archiving schedule for different entities if

possible

27Dmitri Korotkevitch (http://aboutsqlserver.com)

Example 1 – GPS Tracking

28Dmitri Korotkevitch (http://aboutsqlserver.com)

Example 2 – Online retailer

• Shard Nothing - How to
support
o Shared list of Articles
o Inventory management
o Fulfillment process
o Customer Billing

29Dmitri Korotkevitch (http://aboutsqlserver.com)

Getting Data..

30Dmitri Korotkevitch (http://aboutsqlserver.com)

App Server Considerations
• System must have dedicated Data Access Layer

• 2-tiers data access is preferable
o App server code

o Stored Procedures that return unified result sets rather than lookup/merge
on app server side

31Dmitri Korotkevitch (http://aboutsqlserver.com)

Cross Server Joins

32Dmitri Korotkevitch (http://aboutsqlserver.com)

Cross Server Joins
• Introduces a lot of

overhead. Consider pros
and cons before
implementation

• Good when you know
that Customer List is small

• Best when SP needs to
filter by Customers too

33Dmitri Korotkevitch (http://aboutsqlserver.com)

Beware of XML

34Dmitri Korotkevitch (http://aboutsqlserver.com)

Archive Server Availability
• Define the strategy how to handle cases when

archive instance is down
o Read-only reporting – run against operational database and present

warning message to the user

o Read-write activity – either rollback or implement asynchronous approach

• Queue table with SQL Jobs

• Service Broker

• Beware of Stored Procedures recompilation when

linked servers are referenced

35Dmitri Korotkevitch (http://aboutsqlserver.com)

Moving data, storing data
• Custom code, SSIS, Replication, … - whatever works

• Operational server – sliding window pattern
o Partition data if possible

• Move data on partition-by-partition basis

• Consider to move data from the temporary table after partition switch

• Optimize data schema on Archiving server for

reporting rather than for operational activity

• Data compression
o Operational server – use ROW level compression

o Archive servers – use PAGE level compression

• Use multiple filegroups with Archive server. Think

about piecemeal restore.

36Dmitri Korotkevitch (http://aboutsqlserver.com)

Conclusion
• Vertical partitioning is good solution when

o There are a lot of dependencies in the system

o There are a lot of legacy software that needs to be supported

• Implement 2 tier Data Access Layer with client

code and stored procedures

• Beware cross-server joins

• Optimize data schema on Archiving server for

reporting purposes

• Implement error handling strategy for the cases

when Archive server is down

37Dmitri Korotkevitch (http://aboutsqlserver.com)

Q & A
• Thank you for attending!

• Session will be available for download
o http://aboutsqlserver.com/presentations

o http://sqlsaturday.com

• Email: dmitri@aboutsqlserver.com

