
1Dmitri Korotkevitch (http://aboutsqlserver.com)

Adopt, Discover
and Improve

2Dmitri Korotkevitch (http://aboutsqlserver.com)

Who is this guy with
heavy accent?

• Director of Development at Actsoft.
o I’m responsible for DB Design and Development of OLTP system handling

~2500 TPS during peak time

• 9+ years of experience with Microsoft SQL Server

• MCITP
o SQL Server Database Developer 2005, 2008

o SQL Server Database Administrator 2008

• MCPD
o Enterprise Application Developer

• Blog: http://aboutsqlserver.com
o Session will be available for download

• Email: dmitri@aboutsqlserver.com

3Dmitri Korotkevitch (http://aboutsqlserver.com)

What is it all about?
• Session goals:

o Share the experience

o Demonstrate the set of techniques that helps to analyze system state and

identify performance bottlenecks in OLTP blueprint systems

o Show a few things you need to be aware when designing index strategy

on the large databases

o Demonstrate a few common patterns and anti-patterns

• What is out of scope:
o We don’t want to miss after-event party, do we?

o How to configure and maintain SQL Server instances

o Troubleshooting of Data Warehouse / Reporting blueprint systems

o Advanced troubleshooting and monitoring techniques

• Extended events

• Management Data Warehouse

4Dmitri Korotkevitch (http://aboutsqlserver.com)

System Blueprints
OLTP

• High volume of small

identical transactions

• Queries are identical

• Data constantly

changed

Data Warehouse

• Low volume of large

complex transactions

• Complex and different

queries

• Data rarely changes
o Batch refreshes

5Dmitri Korotkevitch (http://aboutsqlserver.com)

System is working slow.
Time to upgrade?

• Hardware is overrated
o Up to degree

• Virtualization and Clouds
o Do you trust SAN administrator in your company?

o What about developer who wrote SAN administration service for your

cloud hosting?

o Research and know the limitations!

6Dmitri Korotkevitch (http://aboutsqlserver.com)

Create Baseline
• Operational standpoint

o Most part of performance metrics are meaningless by themselves

• “I have 35 full scans per second. Is everything OK with my system”?

• “My disk latency is 22 ms. Should I be worried?”

o Baseline helps to be proactive

• Helps to demonstrate achievements to the
management and/or customer ☺
o “We have less blocking” vs. “% of locking waits decreased from 40% to

15%”.

7Dmitri Korotkevitch (http://aboutsqlserver.com)

Simplified Query Life Cycle

RUNNABLE

(signal wait
time)

RUNNING
(CPU time)

SUSPENDED

(wait time)

Actual Execution
Time

Waiting for
resources

(IO, Blocking, etc)

Waiting for CPU

8Dmitri Korotkevitch (http://aboutsqlserver.com)

Never-ending
troubleshooting

Find Top Wait Types
(Wait Statistics)

Analyze System
Performance Counters
(Performance Monitor)

Pinpoint the problem
(SQL Profiler, DMV,

Code reviews)
Fix the problem

9Dmitri Korotkevitch (http://aboutsqlserver.com)

Everything is related

Memory

I/O CPU

Locking

I/O
Stalls

Missing
Indexes

Recompilations

Parallelism Signal
Waits

Bad Code

10Dmitri Korotkevitch (http://aboutsqlserver.com)

Memory and I/O
bottlenecks

• In 95% of the cases caused by non-optimized queries

Non-
Optimized

Query

Table/Index
Scan

Intensive
I/O

operations

Buffer Pool
flush

Buffer Cache Hit Ratio
Page Life Expectancy
Checkpoint pages/sec

Lazy writes/sec

Avg Disk Queue Length
Sys.dm_io_virtual_file_stats

PAGEIOLATCH_*

Full Scans/sec
Index seeks/sec

Sys.dm_db_missing_index_*
DTA

Sys.dm_exec_query_stats
T-SQL Duration Trace

11Dmitri Korotkevitch (http://aboutsqlserver.com)

I/O and Memory issues
troubleshooting

Type Name Description

Wait Types: PAGEIOLATCH_* Disk to memory transfer

IO_COMPLETION I/O operations. Usually non data pages

ASYNC_IO_COMPLETION Asynchronous I/O

WRITELOG, LOGMRG Log I/O operations

Performance
Objects:

Buffer cache hit ratio How often page found in the cache. Should be > 95-97%

Page life expectancy How long page stays in the cache. Should be > 300 sec.

Checkpoint pages/sec
Lazy writers/sec

How often pages saved to disk
Memory pressure: High values + low page life expectancy

Full scans/sec Number of full unrestricted scans per second

Index searches/sec Number of index searches

(Avg) Disk Queue Length The length of the disk queue

12Dmitri Korotkevitch (http://aboutsqlserver.com)

I/O and Memory issues
troubleshooting

Type Name Description

Wait Types: RESOURCE_SEMAPHORE Memory grants wait and statistics
Waits should be minimal for OLTP
Expected for Data Warehouse type systemsPerformance

Objects:
Memory Grant Pending

Memory Grant Outstanding

DMV: Sys.dm_db_missing_index_* Information about missing indexes

Sys.dm_io_virtual_file_stats I/O statistics for database files.
Io_stall – total time that users waited for I/O

13Dmitri Korotkevitch (http://aboutsqlserver.com)

CPU Bottleneck
Type Name Description

Wait Types: SOS_SCHEDULER_YIELD Task is waiting for its quantum to be renewed

CMEMTHREAD Memory allocation from the same object. Possibly Ad-hoc sql

DMV: Sys.dm_os_wait_stats Signal_wait_time_ms > 25% of total waits

Performance
Objects:

Batch Requests/sec Total Batch Requests per second

SQL Compilations/sec Initial compilations + recompilations

SQL Re-Compilations/sec Recompilations

o Could mask:
� Excessive Ad-Hoc SQL / Dynamic SQL / recompilations
� Bad SQL Code
� Non-optimized queries

o OLTP Systems:
� Initial Compilations = Sql Compilations/sec – SQL Re-Compilations/sec
� Plan Reuse = (Batch requests/sec – Initial Compilations) / Batch request/secs

> 90%

14Dmitri Korotkevitch (http://aboutsqlserver.com)

Parallelism issues

• Parallelism is not required for OLTP Systems

• Parallelism always exists in Data Warehouse Systems

• MaxDOP must be <= # of CPUs per hardware NUMA
node

Table
Scan

CPU 1
ID = 1..10,000

CPU 2
ID > 10,001

Gather
Streams

200 ms

500 ms

CXPACKET,
EXCHANGE
Wait Types

15Dmitri Korotkevitch (http://aboutsqlserver.com)

Locking, Blocking and
Deadlocks

Type Name Description

Wait Types: LCK_M_* Waiting for lock to be obtained

DMV: Sys.dm_tran_locks Currently active locks

Traces Blocked Process Report Tasks have been blocked for more than specified amount of time

Deadlock graph Deadlocks

Performance
Objects:

Counters from
<Instance>\Locks

Locks/Timeouts/Deadlocks statistics

16Dmitri Korotkevitch (http://aboutsqlserver.com)

Why Locking?
• Major Lock Types:

o Shared (S) – acquired by readers

o Exclusive (X) – acquired by writers

o Update (U) – acquired by writers while locating rows for update

• Lock Compatibility Matrix:

S U X

S �

U � �

X � � �

• SQL Server always obtains U/X locks regardless of
isolation level (even read uncommitted)

• (X) Locks held till end of transactions

• Beware of non-optimized queries

17Dmitri Korotkevitch (http://aboutsqlserver.com)

Lock Escalation
• SQL Server tries to escalate locks to the

table/partitions level
o Initial Threshold: ~5,000 locks on the object

o If it fails, it tries again every ~1,250 locks

• Pattern: batch operation triggers lock escalation. All

other sessions accessing the object are blocked

• Troubleshooting
o High wait % of intent locks (LCK_M_I*)

o SQL Profiler Locks: Escalation event

• Solution
o Trace flag 1211 (instance level) – not recommended but sometimes

required

o SQL Server 2008: alter table .. set lock_escalation

o Optimistic transaction isolation levels

• Row version model – writers don’t block readers

18Dmitri Korotkevitch (http://aboutsqlserver.com)

Optimistic Isolation Levels
• TANSTAAFL! (There Ain't No Such Thing As A Free Lunch!)

o Bigger row size (14 bytes pointer)

o Tempdb load

o Development chalenges

• Read committed snapshot
o When row is modified, old version stores in TempDb version store

o Only 1 “old” version stored

o Can be switched as the database option without the code changes

• Snapshot
o Data “freezes” on the moment of transaction

o Multiple “old” versions stored in the version store

o Different behavior

19Dmitri Korotkevitch (http://aboutsqlserver.com)

So.. If main bottleneck is
• I/O

o Focus on I/O

• I/O and Memory
o Focus on I/O

• Memory without I/O
o Google it!

• Parallelism in OLTP system
o Reduce MaxDOP AND TEST!

• Locking and blocking
o Detect problematic queries (if needed)

o Beware of Lock Escalation

o As the temporary solution – switch to optimistic isolation level (beware of

consequences!)

o Focus on I/O. If I/O looks OK – check client code.

• So bottom line – detect and fix I/O issues.

20Dmitri Korotkevitch (http://aboutsqlserver.com)

Index structure

21Dmitri Korotkevitch (http://aboutsqlserver.com)

Selectivity
• Very simple example:

• Table has 80,000 rows, 400 bytes each. INT – CI

• CI = 20 rows per leaf page = 4,000 pages

• Clustered index is 3 levels deep

• NCI - Name – 20 bytes = ~320 rows per page = 250

pages. Data distributed evenly
o Select * from T where name like 'ABC%' – (1/26^3) - ~5 rows = ~20 reads

o Select * from T where name like 'AB%' – (1/26^2) ~118 rows = ~360 reads

o Select * from T where name like 'A%' - (1/26) ~3100 rows = ~9250 reads

o ~1330 rows = ~1.67% = ~4000 reads

Sequential I/O
With

READ-AHEAD

Random I/O

Threshold varies
but really low

22Dmitri Korotkevitch (http://aboutsqlserver.com)

Covered indexes

• Select Field1 where Name = ‘ABC’
o Does not require access to the CI data

• Scan always faster than CI scan (smaller row size)

• Bigger leaf row size in compare with regular indexes

23Dmitri Korotkevitch (http://aboutsqlserver.com)

Large / Very-large DB
considerations

• Avoid Key Lookup when processing a lot of rows
o Use covered indexes

• Range scan on covered index could be better than index seek + key

lookup

• Ideally (OLTP) – very few indexes with set of included columns

o Scans on the small rows sets

o Avoid wide leaf rows

• Avoid non-unique CI

• Minimize Data Row size
o Avoid fixed-width types (char/binary)

• Use Data Compression if you cannot change DB design

24Dmitri Korotkevitch (http://aboutsqlserver.com)

Insert/Update,
Random Values

Page Splits

Random inserts -> Page Splits, Fragmentation, etc

HashValue ::= <Sequential Part> + <Random Part>

25Dmitri Korotkevitch (http://aboutsqlserver.com)

Logical data partitioning

• Localization of I/O

• Less physical I/O

with read-ahead

• Less blocking

26Dmitri Korotkevitch (http://aboutsqlserver.com)

Uneven data distribution
• SQL Server uses statistics to generate “good

enough” query plan
o It keeps histogram only on the first column of composite index.

o It expects data to be distributed evenly

What index should
it use?

27Dmitri Korotkevitch (http://aboutsqlserver.com)

Table Partitioning

28Dmitri Korotkevitch (http://aboutsqlserver.com)

Table Partitioning

29Dmitri Korotkevitch (http://aboutsqlserver.com)

Other things to check
• Heap tables (sys.indexes)

o Don’t use it unless you need staging tables

• Index usage (sys.dm_db_index_usage_stats)

• Wide clustered index (sys.indexes, sys.index_columns)

• Duplicates in leftmost columns in composite indexes
o IDX1(A, B), IDX2(A,C) -> IDX3(A,B) INCLUDE(C) or IDX3(A,C) INCLUDE(B)

30Dmitri Korotkevitch (http://aboutsqlserver.com)

Paging, paging, paging

31Dmitri Korotkevitch (http://aboutsqlserver.com)

Q & A
• Thank you for attending!

• Session will be available for download
o http://aboutsqlserver.com/presentations

o http://sqlsaturday.com

• Email: dmitri@aboutsqlserver.com

